Structural Mechanics (1) Week No-04 Part-01

B. Haidar

Deflection in Determinate Structures

Deflections of Trusses, Beams, & Frames: Work-Energy Methods

- Deflection of trusses by Work & Strain energy principle
- Principle of Virtual Work
- Deflections of Trusses by the V. W. M.
- Deflections of Beams by the V. W. M.
- Deflections of Frames by the V. W. M.

B. Haidar

Structural Mechanics (1)

Deflections of Trusses Under External Loads and Other Effects

The virtual work method is used to determine the deflections of trusses under the action of external load, *and temperature change or fabrication errors*.

Let us assume that we want to determine the vertical deflection Δ , at joint B of the truss due to the given external Loads $P_1 \& P_2$.

If *N* represents the internal axial force in an arbitrary member *j* of the truss then from the axial deformation, δ , of this member is given by: $\delta = NL/EA$, where *L*, *A* & *E*, denote respectively, the length, cross-section and elastic modulus of member *j*. $W_{ve} = 1_v (\Delta_r)$ $U_{vi} = \sum N_v (NL/EA) = \sum N_v (\delta_r)$

1) Under the action of external loads:

 $1_{\nu}(\Delta_{r}) = \sum N_{\nu}(N_{r}L/EA)$

2) Under the action of a temperature change ΔT :

 $\mathbf{1}_{\nu}(\Delta_{r}) = \sum N_{\nu}[\alpha(\Delta T)_{r}L]$

3) Under the action of a fabrication error δ_r :

17/11/2024

Example 01: Use the virtual work method to determine the vertical deflection at joint D of the truss shown in the following figure if member CF is 15 mm too long and member EF is 10 mm too short.

Example 01: The member axial forces due to the real system (N) and this virtual system (N_{v1}) are then tabulated as shown in the following table:.

17/11/2024

	Member	δ (mm)	N _v (kN)	N _v δ (kn.mm)	
	EF	15	-1	-15	
	CF	-10	1	-10	
				-25	
$1(\Delta_D) = \sum N_{v}\delta$	$\Delta_D = -25 \ mm$				

 $\Delta_D = 25 mm^{\uparrow}$

 $(1 kN)\Delta_D = -25 kN.mm$

17/11/2024

Example 02: Use the virtual work method to determine the vertical deflection at joint C of the truss shown in the following due to a temperature drop of 8°C in members AB and BC and a temperature increase of 30°C in members AF, FG, GH, and EH.

0.5

1 kN

Example 02: The member axial forces due to the real system (N) and this virtual system (N_{v1}) are then tabulated as shown in the following table:.

17/11/2024

Member	L (m)	ΔΤ (°C)	N _v (kN)	N _{v1} (∆T)L (kN-°C-m)
AB	3	-8	0.667	-16.0
BC	3	-8	0.667	-16.0
AF	3.75	30	-0.833	-93.7
FG	3.75	30	-0.833	-93.7
GH	3.75	30	-0.833	-93.7
EH	3.75	30	-0.833	-93.7
				-406.8

 $1(\Delta_C) = \propto \sum N_v(\Delta T)L$

$$\Delta_C = -0.00488 m$$

 $\Delta_C = 4.88 \ mm$ \uparrow

 $(1 kN)\Delta_C = 1.2 (10^{-5})(-406.8)$

Structural Mechanics (1) Week No-04 Part-02

B. Haidar

Deflection in Determinate Structures

Deflections of Trusses, Beams, & Frames: Work-Energy Methods

- Deflection of trusses by Work & Strain energy principle
- Principle of Virtual Work
- Deflections of Trusses by the V. W. M.
- Deflections of Beams by the V. W. M.
- Deflections of Frames by the V. W. M.

Strain energy in a beam element

Bending Strain energy in a beam element

https://manara.edu.sy/

Shear Strain energy in a beam element,

$$U = \iiint_V \frac{1}{2}\tau\gamma dV = \iiint_V \frac{\tau^2}{2G}dV = k \int_0^L \frac{S^2}{2GA}dx$$

 $k = \begin{cases} 1.2 & \text{for a rectangle} \\ 1.1 & \text{for a circle} \\ 1.2 & \text{for a thin circular} \end{cases}$

B. Haidar

17/11/2024

Comparison of bending and shear strain energies in a simple beam					
$U_{b} = \int_{0}^{L} \frac{M^{2}}{2EI} dx \qquad \qquad U_{s} = 1.2 \int_{0}^{L} \frac{S^{2}}{2GA} dx M(x) = -\frac{1}{2}wx^{2} + \frac{1}{2}wLx \qquad \qquad S(x) = -wx + \frac{1}{2}wL$	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $				
$U_{b} = \int_{0}^{L} \frac{M^{2}}{2EI} dx = \frac{6}{Ebh^{3}} \int_{0}^{L} \left(-\frac{1}{2}wx^{2} + \frac{1}{2}wLx\right)^{2} dx$	$I = bh^3 / 12 & A = bh$				
$= \frac{6w^2}{Ebh^3} \int_0^L (\frac{1}{4}x^4 - \frac{1}{2}Lx^3 + \frac{1}{4}L^2x^2) dx$ $= \frac{6w^2}{Ebh^3} \Big[\frac{1}{20}x^5 - \frac{1}{8}Lx^4 + \frac{1}{12}L^2x^3 \Big]_0^L = \frac{0.05w^2L^5}{Ebh^3}$ $U_S = 1.2 \int_0^L \frac{S^2}{2GA} dx = \frac{0.6}{Gbh} \int_0^L (wx - \frac{1}{2}wL)^2 dx$	$U_{S} / U_{b} = \left(\frac{0.05w^{2}L^{3}}{Gbh}\right) / \left(\frac{0.05w^{2}L^{5}}{Ebh^{3}}\right)$ $= (E / G)(h^{2} / L^{2}) \approx 2h^{2} / L^{2} \ll 1.$				
$= \frac{0.6w^2}{Gbh} \int_0^L (x^2 - Lx + \frac{1}{4}L^2) dx$ $= \frac{0.6w^2}{Gbh} \Big[\frac{1}{3}x^3 - \frac{1}{2}Lx^2 + \frac{1}{4}L^2x \Big]_0^L = \frac{0.05w^2L^3}{Gbh}$	Shear and Axial Strain energies are negligible in comparison with the bending moment energy				

C 1

B. Haidar

DEFLECTIONS OF BEAMS BY THE V. W. M.